THE INFINITY MIRROR TEST FOR GRAPH GENERATORS

Satyaki Sikdar · Daniel Gonzalez · Tim Weninger University of Notre Dame July 9, 2020

Domain	Nodes	Edges
World Wide Web	Webpages	Hyperlinks
Scientific Papers	Papers	Citations
Flights	Airports	Non-stop flights
Facebook	Users	Friendships

WHAT ARE GRAPH GENERATIVE MODELS?

WHAT ARE GRAPH GENERATIVE MODELS?

WHAT ARE GRAPH GENERATIVE MODELS?

The Infinity Mirror Test

Key Idea

Iteratively fitting and generating from a model will amplify the model's implicit biases.

Figure 1: The Infinity Mirror Test

Key Idea

Iteratively fitting and generating from a model will amplify the model's implicit biases.

Methodology

Given an initial graph G_0 and a model \mathcal{M} , compute 50 independent chains of graphs $\langle G_1, G_2, \ldots G_n \rangle$.

Figure 1: The Infinity Mirror Test

Key Idea

Iteratively fitting and generating from a model will amplify the model's implicit biases.

Methodology

Given an initial graph G_0 and a model \mathcal{M} , compute 50 independent chains of graphs $\langle G_1, G_2, \ldots, G_n \rangle$.

Evaluation

Compare graph G_i with G_0 in a given chain to expose different biases.

Figure 1: The Infinity Mirror Test

EXAMPLE INFINITY MIRROR

 $\mathcal{M} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$

EVOLUTION OF RELATIVE EDGE DENSITY ACROSS ITERATIONS

EVOLUTION OF λ -distance across iterations

PORTRAIT DIVERGENCE OVER TIME

Key Findings and Contributions

- · Confirms previously known biases in Kronecker models.
- · Uncovers distortion patterns in popularly used graph models
- · Could be used as a tool to design better, more parsimonious graph models

