Appendices: Supplemental Material

The appendices contain many experiments and results that supplement the core idea of the main paper and may be of interest to some readers. As mentioned in the paper the generated motif graph does not necessarily ensure full connectivity; to attempt to alleviate that three different component connection methods were tried and are elaborated on in Section A As the intent of this application is to be used in the real-world, example run-times are presented in Section B Following this in Section C are the comprehensive tables containing every accuracy score collected throughout the experimentation for this work. A more in-depth discussion and exploration of how the clusters, both in their content distribution and number, are effected by various hyper-parameters is given in Section D On the heels of this, in Section F includes additional qualitative results as well as a more specific results graph accounting for second-order metrics such as the number of edges in a graph. Section G has a list of all the users whose Telegram channels were scraped in order to form the data set. This is followed by a comparison between the kind of output a CBIR system might return and the output returned by a motif mining pipeline in Section H And finally, the normalizing factor in the motif mining formalization is described in detail in Section F

A. Graph Connection

The baseline Erdős-Rényi model takes a parameter p, which specifies the probability of adding an edge between any two components. The weights assigned to these new edges are proportional to the average weights of the edges in the two components being connected. We find p so that the expected number of new edges added to the graph is linear in the initial number of components. This avoids needlessly changing the density of the graph.

The *Best* and *Average* connection strategies work similarly to the Erdős-Rényi approach but with different strategies for determining when components get connected with each other. Given N_C total components and a proposed pair of components C_i and C_j , these algorithms compare the components by extracting their vertices' associated feature vectors. The cosine similarity of these feature vectors then determines the similarity between the two components. The *Best* approach assigns a similarity to the pair (C_i, C_j) based on the *most similar* pair of vertices found from C_i and C_j . The *Average* approach, by contrast, assigns a similarity to (C_i, C_j) based on the *average similarity* of their corresponding vertex pairs. In either case, we then find a threshold θ so that the number of pairs (C_i, C_j) with similarity scores above θ is proportional to N_C . Those pairs of components are then connected as follows: the *Best* adds edges between those vertices that had the most similar feature vectors; the *Average* approach randomly connects k-many pairs of vertices (by default, k = 1). These new edges are weighted in proportion to the components' similarity.

B. Runtimes

The various run times for the pipeline vary widely depending on what feature type is used for extraction. PHASH and SURF features were the quickest due to their ease of parallelization and in SURF's case, its ability to run on a GPU. MOBILE features are noticeably slower but still much faster than VGG features, which took more than twice as long as MOBILE features on the Indonesia data set. It is for this reason primarily the we recommend against using VGG features. PHASH and SURF features, while fast, achieved low scores on both the Reddit and Ukraine data set in their individual forms, and slightly higher in the combination of the two. Surprisingly the SURF_PHASH score on the Indonesia data set was quite high and comparable to the top scores. It's unclear whether this was a fluke, due to some quirk in the data set, or due to the increasing size of the data set. More work needs to be done to explore this but if speed was of the absolute essence it would be worth trying this feature combination to explore a sufficiently large data set. If speed does not matter as much we recommend a variety of the MOBILE features. It is important to keep in mind that the MOBILE features by themselves will be limited to a number of clusters equal to the number of centroids the OPQ index is initialized with and thus we prefer the SURF_MOBILE combination which allows for more clusters, thus achieving a better image/cluster ratio.

Adding images to the index is extremely quick and should not be a serious consideration when exploring motif mining. On the other hand, the graph creation, connection, and clustering have serious run time implications. Local feature querying is significantly slower than the global features due to the voting required to map back to the images from the features retrieved from the index. On top of this, the graph connection process is costly. Note that the run-times for this portion of the pipeline include all three connection methods and in practice only one would need to be used. Even with the connection methods sped up using dynamic programming the BEST and AVG connection methods still averaged seven hours approximately for the Indonesia data set. We don't believe this is worth the CPU time due to no noticeable increase in the accuracy scores on

the resulting graphs. Human observers seem not to notice whether or not a graph has been connected prior to clustering. The clustering run times include all three methods on all four graphs and therefore, in an implementation in which one were to run only a single combinations, are of no serious concern.

An important note is that these run-times are from just one set of experiments and therefore should only be used as rough guidelines to how long one might expect the pipeline to run. Times might vary depending on the hardware and other activities on the machine. These run times were collected on a machine with an Intel Xeon E5-2620 v3 (12) @ 3.200GHz (CPU), 256 GB of RAM and a Titan X and Titan Z (GPUs).

Feature Extraction (Total Runtime)	Reddit (10586)	Ukraine (16433)	Indonesia (44612)
PHASH (CPU, PE=6)	00:01:02 (00:01:17)	00:00:17 (00:00:36)	00:01:59 (00:02:47)
MOBILE (CPU, PE=1)	00:41:10 (00:41:38)	00:39:51 (00:40:27)	02:04:54 (02:06:27)
VGG (GPU, PE=1)	01:41:31 (01:41:54)	02:25:53 (02:26:27)	06:58:22 (06:59:48)
SURF (GPU, PE=6)	00:05:08 (00:20:27)	00:06:20 (00:25:14)	00:14:05 (01:02:55)
SURF_PHASH (GPU/CPU, PE=6)	00:06:30 (00:23:36)	00:06:31 (00:29:12)	00:14:59 (01:15:10)
SURF_MOBILE (GPU/CPU PE=1)	01:14:49 (1:39:40)	00:56:30 (01:19:26)	02:46:13 (03:47:54)
SUF_VGG (GPU, PE=1)	02:17:33 (02:30:37)	02:35:49 (02:58:35)	07:33:56 (08:35:24)

Table 1. CPU, GPU indicates which device the feature extraction was performed on. PE gives the number of parallel processes used during the feature extraction. Due to its low overhead, PHASH is trivial to parallelize which decreases the time needed to extract features. Times are expressed in the "hours:minutes:seconds" format.

Index Add	Reddit (10586)	Ukraine (16433)	Indonesia (44612)
PHASH	00:00:02	00:00:02	00:00:02
MOBILE	00:00:02	00:00:03	00:00:03
VGG	00:00:03	00:00:02	00:00:02
SURF	00:00:31	00:00:42	00:02:46
SURF_PHASH	00:00:31	00:00:43	00:01:55
SURF_MOBILE	00:00:32	00:00:44	00:02:43
SURF_VGG	00:00:25	00:00:43	00:02:08

Table 2. The time spent to add all feature vectors to the index, for each feature type. Times are expressed in the "hours:minutes:seconds" format.

Graph/Cluster Creation	Reddit (10586)	Ukraine (16433)	Indonesia (44612)
PHASH	00:00:04/00:12:05/00:02:45	00:00:04/00:14:29/00:02:35	00:00:13/02:14:17/00:16:17
MOBILE	00:00:05/00:17:24/00:03:47	00:00:05/00:25:55/00:03:23	00:00:11/02:30:59/00:06:08
VGG	00:00:04/00:12:08/00:03:13	00:00:05/00:28:13/00:03:45	00:00:09/02:22:41/00:13:45
SURF	00:43:46/00:00:28/00:07:29	00:49:41/00:04:05/00:08:34	04:51:25/00:39:42/00:21:42
SURF_PHASH	00:32:10/00:17:18/00:03:28	00:59:48/01:44:55/00:05:30	07:11:42/14:02:41/00:13:53
SURF_MOBILE	00:43:46/00:13:07/00:03:59	01:08:49/02:33:48/00:05:38	07:57:32/14:53:36/00:15:54
SURF_VGG	00:30:07/00:09:58/00:01:53	01:04:06/01:50:55/00:09:00	05:43:41/18:56:54/00:13:42

Table 3. Times spent to create the clusters and mine the motifs, for each feature type. Times are expressed in the "hours:minutes:seconds" format.

C. Imposter-Host Accuracy Tables

Below are the full tabular results for the Imposter-Host test accuracy scores. The scores marked as N/A were invalid due to there be a number of clusters equal to the number of images in the data set (thus there was no reason to run the task). There is no apparent pattern to which graph connection method observers preferred, and for that reason we recommend against using them, for run-time purposes. However, if time is of no concern, a number of top scores were produced using the BEST connection method, which could be useful for other data. While Markov clustering produced the highest scores we recommend the Louvain method due to the better spread of images amongst the clusters.

Reddit	Louvain	Markov	Spectral
	23.46% - AVG	<u>38.73% - AVG</u>	19.52% - AVG
DUACU	25.18% - BEST	23.63% - BEST	20.34% - BEST
РНАЗН	24.87% - ER	N/A - ER	<u>23.53% - ER</u>
	<u> 25.57% - REG</u>	N/A - REG	18.83% - REG
	46.62% - AVG	45.31% - AVG	39.44% - AVG
	<u>65.11% - BEST</u>	59.55% - BEST	48.88% - BEST
MOBILE	58.96% - ER	60.43% - ER	49.39% - ER
	57.86% - REG	56.49% - REG	46.45% - REG
	21.93% - AVG	34.28% - AVG	24.61% - AVG
VCC	61.13% - BEST	57.48% - BEST	13.59% - BEST
VGG	57.27% - ER	<u>64.25% - ER</u>	<u>24.79% - ER</u>
	<u>62.00% - REG</u>	58.76% - REG	14.95% - REG
SURF	23.29%	35.08%	39.62%
	21.49% - AVG	29.22% - AVG	20.49% - AVG
CUDE DUACU	21.96% - BEST	32.09% - BEST	23.41% - BEST
SURF_PHASH	25.68% - ER	<u> 36.23% - ER</u>	<u>23.74% - ER</u>
	<u>26.65% - REG</u>	33.26% - REG	08.77% - REG
	40.28% - AVG	63.83% - AVG	21.26% - AVG
SUDE MODILE	<u>58.88% - BEST</u>	64.32% - BEST	22.79% - BEST
SURF_MOBILE	55.63% - ER	<u>64.96% - ER</u>	17.77% - ER
	56.22% - REG	64.67% - REG	<u>26.94% - REG</u>
	37.94% - AVG	44.01% - AVG	22.92% - AVG
SUDE VCC	<u>54.01% - BEST</u>	55.12% - BEST	<u>29.30% - BEST</u>
SUKF_VGG	45.87% - ER	49.62% - ER	28.53% - ER
	53.90% - REG	<u>57.35% - REG</u>	23.49% - REG

C			
Indonesia	Louvain	Markov	Spectral
	<u>32.53% - AVG</u>	N/A - AVG	31.07% - AVG
DUACU	17.90% - BEST	N/A - BEST	<u>31.81% - BEST</u>
гпазп	32.02% - ER	N/A - ER	31.61% - ER
	30.12% - REG	N/A - REG	28.45% - REG
	46.04% - AVG	19.30% - AVG	22.55% - AVG
	58.43% - BEST	<u>64.71% - BEST</u>	32.10% - BEST
MOBILE	60.06% - ER	53.42% - ER	32.39% - ER
	<u>65.11% - REG</u>	46.85% - REG	<u>35.55% - REG</u>
	34.73% - AVG	23.72% - AVG	30.31% - AVG
NCC	64.61% - BEST	55.69% - BEST	50.03% - BEST
VGG	77.05% - ER	52.95% - ER	49.44% - ER
	66.92% - REG	<u>73.46% - REG</u>	<u>50.07% - REG</u>
	42.67% - AVG	60.94% - AVG	40.70% - AVG
CUDE	42.36% - BEST	58.58% - BEST	39.38% - BEST
SUKF	<u>46.08% - ER</u>	54.73% - ER	<u>44.66% - ER</u>
	41.71% - REG	18.18% - REG	39.08% - REG
	36.81% - AVG	45.93% - AVG	32.39% - AVG
CUDE DUACH	<u>71.95% - BEST</u>	81.91% - BEST	<u>44.16% - BEST</u>
SURF_PHASH	58.89% - ER	<u>86.19% - ER</u>	03.99% - ER
	67.48% - REG	82.02% - REG	21.26% - REG
	25.96% - AVG	48.19% - AVG	45.76% - AVG
SUDE MODILE	66.99% - BEST	<u>93.81% - BEST</u>	32.26% - BEST
SURF_MOBILE	62.78% - ER	88.02% - ER	44.13% - ER
	<u>67.01% - REG</u>	86.05% - REG	18.98% - REG
	21.19% - AVG	45.94% - AVG	31.28% - AVG
SUDE VCC	38.49% - BEST	56.61% - BEST	21.23% - BEST
SUKF_VGG	38.75% - ER	57.95% - ER	25.36% - ER
	43.92% - REG	77.68% - REG	31.76% - REG

	Ukraine	Louvain	Markov	Spectral
		16.98% - AVG	N/A - AVG	18.73% - AVG
	DUACU	23.47% - BEST	N/A - BEST	19.36% - BEST
	FIIASII	23.60% - ER	N/A - ER	21.93% - ER
		<u>25.19% - REG</u>	N/A - REG	<u>23.22% - REG</u>
		49.76% - AVG	32.43% - AVG	23.66% - AVG
		66.43% - BEST	<u>67.68% - BEST</u>	<u>55.47% - BEST</u>
	MODILE	61.99% - ER	65.37% - ER	47.97% - ER
		<u>73.04% - REG</u>	56.56% - REG	41.21% - REG
		50.10% - AVG	25.91% - AVG	24.68% - AVG
	VCC	<u>56.08% - BEST</u>	<u>63.24% - BEST</u>	39.51% - BEST
	VGG	47.45% - ER	51.01% - ER	<u>45.26% - ER</u>
		48.96% - REG	49.96% - REG	35.25% - REG
		32.86% - AVG	19.51% - AVG	<u>33.68% - AVG</u>
	CLIDE	32.86% - BEST	<u>57.36% - BEST</u>	27.11% - BEST
	SURF	32.29% - ER	49.56% - ER	20.64% - ER
		<u>38.61% - REG</u>	47.15% - REG	25.35% - REG
		14.39% - AVG	39.89% - AVG	<u>21.78% - AVG</u>
	CUDE DUACU	<u>38.35% - BEST</u>	<u>65.60% - BEST</u>	20.28% - BEST
	SUKF_PHASH	29.97% - ER	62.26% - ER	05.43% - ER
		37.83% - REG	58.62% - REG	10.09% - REG
		17.35% - AVG	44.18% - AVG	28.89% - AVG
	SUDE MODILE	<u>71.55% - BEST</u>	13.61% - BEST	37.12% - BEST
	SURF_MOBILE	54.51% - ER	<u>79.91% - ER</u>	<u>59.02% - ER</u>
		66.05% - REG	75.77% - REG	14.52% - REG
		31.91% - AVG	45.82% - AVG	30.74% - AVG
	SUDE VCC	56.52% - BEST	<u>77.42% - BEST</u>	06.81% - BEST
	SORL'AGG	46.76% - ER	75.35% - ER	19.88% - ER
		<u>69.95% - REG</u>	75.15% - REG	<u>31.81% - REG</u>

D. Cluster Structures.

Additional information about the structure of the clusters is provided in this section.

D.1. Cluster Statistics.

Reddit	Louvain	Markov	Spectral
	244 - AVG	<u>10586 - AVG</u>	150 - AVG
DUACU	257 - BEST	10586 - BEST	150 - BEST
РПАЗП	244 - ER	10586 - ER	<u>150 - ER</u>
	<u> 256 - REG</u>	10586 - REG	150 - REG
	164 - AVG	355 - AVG	150 - AVG
	<u> 257 - BEST</u>	394 - BEST	150 - BEST
NIODILE	238 - ER	<u> 393 - ER</u>	<u>150 - ER</u>
	128 - REG	161 - REG	150 - REG
	127 - AVG	809 - AVG	150 - AVG
VCC	255 - BEST	425 - BEST	150 - BEST
VGG	236 - ER	<u>424 - ER</u>	<u> 150 - ER</u>
	<u> 256 - REG</u>	425 - REG	150 - REG
	28 - AVG	760 - AVG	150 - AVG
CUDE	28 - BEST	760 - BEST	150 - BEST
SUKF	28 - ER	760 - ER	150 - ER
	28 - REG	760 - REG	150 - REG
	158 - AVG	4827 - AVG	150 - AVG
SUDE DUA SU	537 - BEST	4263 - BEST	150 - BEST
SUKF_PHASH	408 - ER	<u>4261 - ER</u>	<u> 150 - ER</u>
	<u>535 - REG</u>	4260 - REG	150 - REG
	203 - AVG	5059 - AVG	150 - AVG
SUDE MODILE	<u> 397 - BEST</u>	4705 - BEST	150 - BEST
SURF_MOBILE	326 - ER	<u>4707 - ER</u>	150 - ER
	396 - REG	4704 - REG	<u>150 - REG</u>
	173 - AVG	4388 - AVG	150 - AVG
SUPE VGC	<u> 394 - BEST</u>	3905 - BEST	<u>150 - BEST</u>
	319 - ER	3904 - ER	150 - ER
	391 - REG	3905 - REG	150 - REG

Table 4. The number of clusters produced from each of the 52 combinations on the Reddit data set. The number that correlates with the combination that achieved the top accuracy score on the Imposter-Host task is underlined.

Indonesia	Louvain	Markov	Spectral
	256 - AVG	44612 - AVG	150 - AVG
	257 - BEST	44612 - BEST	150 - BEST
PHASH	256 - ER	44612 - ER	144 - ER
	256 - REG	44612 - REG	147 - REG
	159 - AVG	2264 - AVG	150 - AVG
	256 - BEST	3187 - BEST	150 - BEST
MOBILE	254 - ER	3187 - ER	150 - ER
	<u> 256 - REG</u>	3186 - REG	<u>150 - REG</u>
	154 - AVG	3157 - AVG	150 - AVG
VCC	257 - BEST	1609 - BEST	148 - BEST
000	<u> 254 - ER</u>	1590 - ER	144 - ER
	256 - REG	<u> 1607 - REG</u>	<u>149 - REG</u>
	69 - AVG	<u>3103 - AVG</u>	150 - AVG
SURF	72 - BEST	3136 - BEST	150 - BEST
	<u>68 - ER</u>	3103 - ER	<u> 150 - ER</u>
	73 - REG	3103 - REG	150 - REG
	197 - AVG	16197 - AVG	150 - AVG
CLIDE DUACU	<u>1456 - BEST</u>	13659 - BEST	<u>146 - BEST</u>
SUKE_FIASH	846 - ER	<u>13620 - ER</u>	147 - ER
	1609 - REG	13648 - REG	150 - REG
	183 - AVG	17531 - AVG	150 - AVG
STIDE MODILE	1597 - BEST	<u>14670 - BEST</u>	<u>149 - BEST</u>
SURF_MOBILE	846 - ER	14639 - ER	146 - ER
	<u> 1609 - REG</u>	14668 - REG	150 - REG
	154 - AVG	15280 - AVG	150 - AVG
SUDE VCC	2000 - BEST	11712 - BEST	149 - BEST
SUKF_VUU	1150 - ER	11687 - ER	150 - ER
	<u>2008 - REG</u>	<u>11703 - REG</u>	<u>150 - REG</u>

Table 5. The number of clusters produced from each of the 52 combinations on the Indonesia data set.

Ukraine	Louvain	Markov	Spectral
	252 - AVG	16433 - AVG	150 - AVG
DUACU	257 - BEST	16433 - BEST	150 - BEST
РПАЗП	252 - ER	16433 - ER	148 - ER
	<u> 256 - REG</u>	16433 - REG	<u>147 - REG</u>
	162 - AVG	416 - AVG	150 - AVG
MODILE	256 - BEST	<u>511 - BEST</u>	<u>149 - BEST</u>
MODILE	257 - ER	501 - ER	148 - ER
	<u> 256 - REG</u>	510 - REG	150 - REG
	138 - AVG	1068 - AVG	150 - AVG
VGG	<u> 252 - BEST</u>	<u>437 - BEST</u>	150 - BEST
VUU	238 - ER	437 - ER	<u>150 - ER</u>
	256 - REG	436 - REG	150 - REG
	17 - AVG	2169 - AVG	<u>149 - AVG</u>
SURF	18 - BEST	<u> 2169 - BEST</u>	148 - BEST
	17 - ER	2169 - ER	150 - ER
	<u>21 - REG</u>	2169 - REG	148 - REG
	94 - AVG	8398 - AVG	<u>150 - AVG</u>
SUDE DUASU	<u>1203 - BEST</u>	<u>5453 - BEST</u>	148 - BEST
SURF_FIIASII	694 - ER	5449 - ER	148 - ER
	1202 - REG	5451 - REG	150 - REG
	97 - AVG	9084 - AVG	150 - AVG
SUDE MOBILE	<u>1282 - BEST</u>	5730 - BEST	149 - BEST
SURF_MOBILE	658 - ER	<u>5722 - ER</u>	<u>147 - ER</u>
	1286 - REG	5727 - REG	150 - REG
	98 - AVG	8351 - AVG	150 - AVG
SURE VCC	1191 - BEST	<u>5523 - BEST</u>	146 - BEST
JUKL-100	645 - ER	5511 - ER	148 - ER
	<u>1189 - REG</u>	5520 - REG	<u>150 - REG</u>

Table 6. The number of clusters produced from each of the 52 combinations on the Ukraine data set.

Figure 1. Box plots of the distribution of cluster sizes for each data set and each combination of feature type, clustering algorithm, and connection type. Note that the *x*-axis has a logarithmic scale.

D.2. Cluster Image Distributions.

As the motif mining pipeline is intended to aid human observers, we believe the distribution of images amongst the clusters is of the utmost importance. Fig. [] shows box and whisker plots for all of the possible combinations. While the Markov clustering algorithm delivers the highest accuracy scores on the Imposter-Host test, it is important to realize that the majority of the clusters are of size 1, or in other words useless to analysts. The highest realized accuracy score was SURF_MOBILE-BEST-MARKOV on the Indonesian data set. However, the second quartile for the image distribution was at 2 images per cluster and the third quartile is only 3 images per cluster. Out of these clusters only 63.38% were of a size larger than 1, and only 20.59% contained more than 3 images (i.e., valid for the Imposter-Host task). From Fig. [] we can see that this trend holds for almost all possible combinations when Markov clustering is used. It is for this reason that we recommend Louvain clustering be used with the combined global-local features. In contrast to the Markov statistics, SURF_MOBILE-BEST-LOUVAIN, on the Indonesian data set, has a second quartile at 7 images and the third quartile is 19 images. Additionally 100% of the clusters have more than 1 image per cluster and 78.46% have more than 3 images. Per

Fig. 1 this trend holds similar for all combinations and on all three data sets.

If one were to look at just Fig. I they might come to the conclusion that Spectral clustering achieves a similar distribution to Louvain clustering and may wonder why the authors recommend Louvain clustering over Spectral clustering. It is for this reason that the whiskers are important. The maximum cluster size for SURF_MOBILE-BEST-SPECTRAL is 40,909 images. The data set contains 44,612 images. With 40,909 images in a single cluster this means that 91.69% of the images are essentially unsorted. We consider this case unhelpful to human reviewers, in much the same way as Markov clustering puts thousands of images into their own individual clusters. It is for these reasons that we believe Louvain clustering is the best of the three methods tested for motif mining.

E. Graph Structures.

Additional information about the graph structure of the clusters is provided in this section.

Components, Edges	Reddit	Ukr	Indo	
PHASH	256C, 38068E	256C, 58537E	256C, 908593E	
MOBILE	256C, 38523E	256C, 58565E	256C, 202405E	
VGG	256C, 41440E	256C, 63952E	256C, 193731E	
SURF	1C, 161253E	1C, 197858E	14C, 475000E	
SURF_PHASH	412C, 24877E	935C, 35938E	1085C, 209128E	
SURF_MOBILE	336C, 21728E	1112C, 32887E	1237C, 203859E	
SURF_VGG	324C, 18837E	984C, 33389E	1372C, 213988E	

Table 7. The number of components and edges the generated graph contained for each feature type for each data set. Of particular interest is each global feature resulting in 256 components (due to the number of FAISS centroids), SURF features producing 1, 1, and 14 components (due to their locality and diversity of query results), and the combined features resulting in a relatively high number of components implying the discovery of 'sub-structures' of similar images within the already calculated FAISS centroids.

Components, Edges	128 Centroids	256 Centroids	512 Centroids	1024 Centroids
PHASH	128C, 50406E	256C, 38068E	512C, 25491E	1024C, 19200E
MOBILE	128C, 59138E	256C, 38523E	512C, 26390E	1024C, 19937E
VGG	128C, 68027E	256C, 41440E	512C, 27070E	1024C, 19652E
SURF	1C, 158000E	1C, 161253E	1C, 159750E	1C, 157600E
SURF_PHASH	233C, 24753E	412C, 24877E	733C, 24086E	1257C, 22406E
SURF_MOBILE	205C, 22353E	336C, 21728E	599C, 21466E	1116C, 20432E
SURF_VGG	200C, 19667E	324C, 18837E	588C, 19008E	1083C, 18039E

E.1. Centroid and Tag Number Experiments.

Table 8. The number of components and edges the resulting graphs had when the index was created with 128, 256, 512, and 1024 centroids. This shows that regardless of the number of centroids chosen all the global features accomplish is exposing the pre-existing centroid space from the OPQ index.

Components, Edges	8 Length Tag	16 Length Tag	32 Length Tag	64 Length Tag
SURF_PHASH	259C, 27575E	412C, 24877E	N/A	N/A
SURF_MOBILE	362C, 20789E	336C, 21728E	633C, 18447E	577C, 18706E
SURF_VGG	340C, 18777E	324C, 18837E	558C, 16040E	533C, 16189E

Table 9. How the length of the global tag affects the number of components and edges in the resulting graph. The fact that PHASH features have a length of 16 was the primary driver of that length being used. One can see however that increasing the tag almost doubles the number of components between 16 and 32. If the goal is a larger number of discrete clusters this might be a worthwhile change.

F. Supplemental Qualitative and Quantitative Results

Additional visual results showing graphs and images, as well as additional Impostor-Host plots for various experiments are shown in this section.

F.1. Meme Motifs

Figure 2. An example of a Reddit motif demonstrating the kind of visual remixing present in the data set.

Figure 3. A motif containing remixes of a stack of tree frogs. This graph shows the usefulness of the global feature information, as all the images look very similar globally and matching in this case benefits from the combined feature type.

Figure 4. An example of the local features being used to create a graph from the Indonesian data set. Each image, while globally very different, contains at least part of a map of Indonesia. The local features are able to find the shared map portions in each of the images and group them together.

Figure 5. A collection of presidential campaign ads from the Indonesian election in 2019. The same base image is used throughout but is remixed in various contexts. This kind of campaign ad remixing was common in the data set for both candidates.

Figure 6. A graph of Ukrainian memes. While there is a bit of variation in visual appearance, all of the memes share the same four panel structure and a subgroup of them share the same genre on top of which various topics are remixed.

Figure 7. An example of a graph which human observers may consider interesting but we would consider a failure from an algorithmic perspective. While human observers might be interested in exploring the online meme space on Telegram, visually the images in this graph do not have much in common. While the implemented motif mining pipeline is good, it is far from perfect and not every graph contains a recognizable motif from a computer vision stand-point.

F.2. Connection Type Plots

Figure 8. The accuracy scores of the Imposter-Host test across the three data sets for each connection type. Each of the three clustering methods is noted with a different shape. The size of each marker is proportional to the number of clusters.

Figure 9. The accuracy scores of the Imposter-Host test across the three data sets for each connection type. Each of the three clustering methods is noted with a different shape. The size of each marker is proportional to the number of components in the graph.

Figure 10. The accuracy scores of the Imposter-Host test across the three data sets for each connection type. Each of the three clustering methods is noted with a different shape. The size of each marker is proportional to the ratio of the number of components in the graph to the number of images in the dataset.

Figure 11. The accuracy scores of the Imposter-Host test across the three data sets for each connection type. Each of the three clustering methods is noted with a different shape. The size of each marker is proportional to the number of edges in the graph.

F.3. Feature Type Plots

Figure 12. The accuracy scores of the Imposter-Host test across the three data sets for each feature type. Each of the three clustering methods is noted with a different shape. The size of each marker is proportional to the number of clusters.

Figure 13. The accuracy scores of the Imposter-Host test across the three data sets for each feature type. Each of the three clustering methods is noted with a different shape. The size of each marker is proportional to the number of components in the graph.

Figure 14. The accuracy scores of the Imposter-Host test across the three data sets for each feature type. Each of the three clustering methods is noted with a different shape. The size of each marker is proportional to the ratio of the number of components in the graph to the number of images in the dataset.

Figure 15. The accuracy scores of the Imposter-Host test across the three data sets for each feature type. Each of the three clustering methods is noted with a different shape. The size of each marker is proportional to the number of edges in the graph.

G. Telegram Users Used as Sources for Ukraine Dataset

Medvezhatko1488, sashakots, russ_orientalist, white_powder2020, karpatska_sich, NSDviz, dadzibao, olifand_rolands, ASupersharij, BerezaJuice, dark_k, joker_ukr, kryuchoktv, legitimniy, notesdetective, rezident_ua, smolii_ukraine, tayni_deputata, thanksrinat, nationalcorps, nedotorkani, ivkolive, ze_konets, ukrnastup, dubinskypro, ruheight, AleksandrSemchenko, botsmanua, borodatayaba, gistapa, kachuratut, poliakovanton, BeregTime, MaksymZhorin, tradition_and_order, KlymenkoTime, sorosata, tsibulya_ua, Ten_NaPleten, donbasscase, lugansk_inside, sorok40russia, ze_landia, zv_kyiv, moh_zdoh, wargonzo, apleonkov, PiB88, format_W, gribvictoria, maksnazar, sheptoon, dobkinmm, UlejUA, spletnicca, razvedinfo, rus_demiurge, LastBP, zlobniaukr, mig41, catars_is, ukrain1an_news, korchynskiy, ua_stalker, project_solaris, liberaxy, orthodox_news, sooproon_bestiary, tasty_flashbacks, fascio_memes, intolerant_historian, Ironvoter, mem_lozha, knpu_division, kekistandivision, EternalMuscovites, nt_orthodox, intolerant_journalist, AD_i_OR, nazbolukr, odindrugqoom, DeepStateUA, ukrnastup, ep867, legion_of_kuchma, NFafaf, History_Q, vidardivision, avantguardia, ulpra, KARAS_EVGEN, GrantDetector, privatnamemarnya, OstanniyCapitalist, afemina, totalopir, intermariumnc, intolerant_warfighter, ukrmemesmineproblemes, evil_ukraine, national_resistance_ua, propala_gramota, postbased, ukrainianintolerant, korchynskiy, Ukrainianintolerantrezerv, RightLit, selo_divisionS, mayonez_sorosa, ubd_ua, national_corp_kyiv, centuriaua

H. CBIR Output Comparison

Figure 16. An experimental comparison between the output format that a standard CBIR system [?] returns for a query versus the standard output the motif mining pipeline outlined in this work would give for the same dataset.

In Fig. 16 one can see the difference in output between a CBIR system [?] and the implemented motif mining pipeline. CBIR systems will return a single ranked list for any given query image as can be seen on the left of the Figure. A motif mining pipeline, on the other hand, will return an explorable graph of related images. In order to generate this comparison, an image from the motif graph on the right was chosen as the query image. This figure demonstrates the difference in usefulness of the output of the two systems, especially when the data set is large, unsorted, and unlabelled. Instead of needing to know *a priori* which query images to use, or randomly selecting them, a reviewer interested in exploring the data set can instead use the motif mining system to generate motif graphs from the data set. Notice how the format of the query image is shared stylistically amongst different images in the motif graph and also how the graph explores the relationship between the bear cartoon character that is remixed in the memes on the left of the motif graph with the memes on the right.

I. Normalizing Factor in the Motif Mining Formalization

To elaborate on the normalization factor in the motif mining formalization, the minimalization is simply a representation of the kind of optimization we are performing (trying to find a/the best node-clustering that will optimally accord with human opinion). This normalizing factor can be defined to prefer certain clusterings over others (for example, to prevent clusters from becoming too large or too small), and helps present the problem in its full generality. If one were trying to find the optimal human-evaluated node clustering, this normalizing factor would be set to $\gamma(c, \tilde{c}) = 1$ for all pairs of clusters. We do not carry out this optimization as-written due to (1) the exponential size of the search space and (2) the cost associated with evaluating $H(v_1, \ldots v_k, \tilde{v})$ and its inherently subjective nature. Thus, as stated in the main text, this paper pursues an approximation.